AWS DynamoDB Patterns: Building Scalable NoSQL Applications
AWS

AWS DynamoDB Patterns: Building Scalable NoSQL Applications

Learn essential patterns and best practices for designing and implementing scalable applications using Amazon DynamoDB, including data modeling, access patterns, and optimization strategies

February 25, 2024
DevHub Team
2 min read

Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. This guide explores common patterns and best practices for building efficient applications with DynamoDB.

%%{init: {'theme': 'base', 'themeVariables': { 'primaryColor': '#FF9900', 'primaryTextColor': '#232F3E', 'primaryBorderColor': '#232F3E', 'lineColor': '#232F3E', 'secondaryColor': '#147EB4', 'tertiaryColor': '#232F3E', 'fontFamily': 'system-ui', 'fontSize': '14px' }}}%% graph TB subgraph DataModel["Data Modeling"] direction TB Keys["Key Design"] Schema["Schema Design"] Patterns["Access Patterns"] end subgraph Operations["Data Operations"] direction TB Write["Write Operations"] Stream["Stream Processing"] Query["Query Patterns"] end subgraph Features["Advanced Features"] direction TB subgraph Performance["Performance"] direction LR DAX["DAX"] AutoScale["Auto Scaling"] end subgraph Security["Security"] direction LR IAM["IAM"] KMS["KMS"] VPC["VPC Endpoints"] end end DataModel --> Operations Operations --> Features classDef modelNode fill:#FF9900,stroke:#232F3E,color:#232F3E,stroke-width:2px,font-weight:bold classDef operationNode fill:#232F3E,stroke:#232F3E,color:#FFFFFF,stroke-width:2px,font-weight:bold classDef featureNode fill:#147EB4,stroke:#232F3E,color:#FFFFFF,stroke-width:2px,font-weight:bold classDef groupStyle fill:transparent,stroke:#232F3E,stroke-width:2px,color:#232F3E,font-weight:bold class Keys,Schema,Patterns modelNode class Write,Stream,Query operationNode class DAX,AutoScale,IAM,KMS,VPC featureNode class DataModel,Operations,Features,Performance,Security groupStyle

Data Modeling Patterns

1. Single Table Design

interface OrderItem { PK: string; // ORDER#<orderId> SK: string; // METADATA#<timestamp> GSI1PK: string; // CUSTOMER#<customerId> GSI1SK: string; // ORDER#<status>#<timestamp> orderId: string; customerId: string; status: string; amount: number; createdAt: string; }

2. Write Operations

const AWS = require('aws-sdk'); const dynamodb = new AWS.DynamoDB.DocumentClient(); async function getCustomerOrders(customerId, startDate, endDate) { const params = { TableName: 'Orders', KeyConditionExpression: 'PK = :pk AND SK BETWEEN :start AND :end', ExpressionAttributeValues: { ':pk': `CUSTOMER#${customerId}`, ':start': `ORDER#${startDate}`, ':end': `ORDER#${endDate}` } }; return await dynamodb.query(params).promise(); }

Best Practices

  1. Data Modeling

    • Design for specific access patterns
    • Use composite sort keys
    • Implement single-table design
    • Minimize secondary indexes
  2. Performance

    • Use DAX for caching
    • Implement auto scaling
    • Choose appropriate partition keys
    • Use batch operations
  3. Cost Optimization

    • Monitor and optimize capacity
    • Use on-demand capacity wisely
    • Implement TTL for data cleanup
    • Optimize item size
  4. Security

    • Use IAM roles and policies
    • Encrypt data at rest
    • Implement VPC endpoints
    • Monitor with CloudTrail

References

  1. DynamoDB Documentation
  2. Best Practices
  3. Security
  4. Performance
DynamoDB
NoSQL
Database
Performance