Building and Deploying Applications on Google App Engine
GCP

Building and Deploying Applications on Google App Engine

A comprehensive guide to deploying applications on Google App Engine. Learn about environment configuration, scaling, and best practices for running your apps.

March 8, 2024
Technical Writer
4 min read

Building and Deploying Applications on Google App Engine

Google App Engine (GAE) is a fully managed Platform-as-a-Service (PaaS) that makes deploying and scaling applications easy. This guide covers everything you need to know about using App Engine effectively.

Architecture Overview

graph TB subgraph AppEngine["App Engine Service"] direction TB subgraph Environments["Environments"] direction LR SE["Standard Environment"] FE["Flexible Environment"] end subgraph Features["Platform Features"] direction LR AS["Auto Scaling"] LB["Load Balancing"] VS["Version Management"] end subgraph Services["Platform Services"] direction LR DS["Datastore"] MM["Memcache"] TQ["Task Queue"] end end subgraph External["External Services"] direction TB SQL["Cloud SQL"] CDN["Cloud CDN"] SM["Secret Manager"] end AppEngine --> External classDef primary fill:#4285f4,stroke:#666,stroke-width:2px,color:#fff classDef secondary fill:#34a853,stroke:#666,stroke-width:2px,color:#fff classDef tertiary fill:#fbbc05,stroke:#666,stroke-width:2px,color:#fff class AppEngine,Environments primary class Features,Services secondary class External tertiary

Environment Comparison

| Feature | Standard Environment | Flexible Environment | |---------|---------------------|---------------------| | Startup | Seconds | Minutes | | SSH Access | No | Yes | | Network Access | Via App Engine services | Full network access | | Pricing | Per instance hour | Per vCPU, memory, disk | | Scale to Zero | Yes | No | | Custom Runtime | No | Yes (Docker) |

Getting Started

1. Standard Environment Setup

Example Python application:

# main.py from flask import Flask app = Flask(__name__) @app.route('/') def hello(): return 'Hello from App Engine!' if __name__ == '__main__': app.run(host='127.0.0.1', port=8080, debug=True)

Configuration file:

# app.yaml runtime: python39 instance_class: F1 automatic_scaling: target_cpu_utilization: 0.65 min_instances: 1 max_instances: 10 handlers: - url: /.* script: auto

2. Flexible Environment Setup

# app.yaml runtime: custom env: flex manual_scaling: instances: 2 resources: cpu: 1 memory_gb: 2 disk_size_gb: 10 env_variables: ENV: 'production'

Dockerfile for custom runtime:

FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install -r requirements.txt COPY . . CMD gunicorn -b :$PORT main:app

Deployment and Management

1. Deploying Applications

# Deploy application gcloud app deploy app.yaml # Deploy specific version gcloud app deploy app.yaml --version=v1 # Deploy with traffic splitting gcloud app deploy app.yaml --version=v2 --no-promote

2. Managing Versions

# List versions gcloud app versions list # Split traffic gcloud app services set-traffic default \ --splits=v1=0.5,v2=0.5 # Migrate traffic gcloud app services set-traffic default \ --splits=v2=1 \ --migrate

Configuration Options

1. Scaling Configuration

# Automatic scaling automatic_scaling: target_cpu_utilization: 0.65 target_throughput_utilization: 0.6 min_instances: 1 max_instances: 10 max_concurrent_requests: 50 # Basic scaling basic_scaling: max_instances: 5 idle_timeout: 10m # Manual scaling manual_scaling: instances: 3

2. Environment Variables

env_variables: DATABASE_URL: 'postgresql://user:pass@host:5432/db' API_KEY: '${SECRET_KEY}' CACHE_TTL: '3600'

Advanced Features

1. Custom Domains

# Map custom domain gcloud app domain-mappings create \ --domain=www.example.com # Update SSL certificate gcloud app ssl-certificates update \ --display-name=main-cert \ --domain=www.example.com

2. Task Queues

# queue.yaml queue: - name: default rate: 5/s bucket_size: 10 retry_parameters: task_retry_limit: 3 min_backoff_seconds: 30

Security Best Practices

1. Identity and Access Management

# Set IAM policy gcloud app set-iam-policy policy.yaml # Grant access gcloud projects add-iam-policy-binding PROJECT_ID \ --member="user:jane@example.com" \ --role="roles/appengine.deployer"

2. Firewall Rules

# Create firewall rule gcloud app firewall-rules create allow-internal \ --action allow \ --source-range 10.0.0.0/8 \ --description "Allow internal traffic"

Monitoring and Logging

1. Viewing Logs

# View application logs gcloud app logs tail # Read specific logs gcloud logging read "resource.type=gae_app" \ --project=PROJECT_ID \ --limit=10

2. Monitoring Metrics

Key metrics to monitor:

  • Instance count
  • Request latency
  • Error rates
  • Memory usage
  • CPU utilization

Performance Optimization

1. Caching Strategies

# Using Memcache from google.appengine.api import memcache def get_data(key): data = memcache.get(key) if data is None: data = fetch_from_database(key) memcache.add(key, data, 3600) # Cache for 1 hour return data

2. Static File Handling

# app.yaml handlers: - url: /static static_dir: static http_headers: Cache-Control: public, max-age=3600 - url: /.* script: auto

Troubleshooting

1. Common Issues

# Check application status gcloud app describe # View instance details gcloud app instances list # Debug routing issues gcloud app routes list

2. Health Checks

# app.yaml health_check: enable_health_check: true check_interval_sec: 5 timeout_sec: 4 unhealthy_threshold: 2 healthy_threshold: 2

Cost Optimization

  1. Instance Management

    • Use automatic scaling
    • Set appropriate instance classes
    • Implement efficient caching
    • Use CDN for static content
  2. Resource Utilization

    • Monitor and adjust instance count
    • Optimize database queries
    • Use asynchronous tasks
    • Implement proper caching

Conclusion

Google App Engine provides a robust platform for deploying and scaling applications. Key takeaways:

  • Choose the right environment (Standard vs Flexible)
  • Implement proper scaling strategies
  • Use built-in services effectively
  • Monitor performance and costs
  • Follow security best practices

For more information, refer to the official App Engine documentation.

gcp
compute
app-engine
paas
deployment